UNIX网络编程:socket & select() 实现clients/server通信
一、问题引入
UNIX网络编程 卷1:套接字联网API(第三版) 第6章 介绍了I/O复用可以通过select()的单进程服务器与多客户端通信。
UNIX下可用的5中I/O模型:
- 阻塞式I/O
- 非阻塞式I/O
- I/O复用(select和poll)
- 信号驱动式I/O(SIGIO)
- 异步I/O(POSIX的aio_系列函数)
其中前面4种可以分为同步I/O,第五种为异步I/O。
二、解决过程
2-1 client 代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#define IP "10.8.198.227"
#define PORT 8887
#define BUF_MAX_SIZE 1024
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))
static int handle(int connect_fd, const char *socket)
{
char buf[BUF_MAX_SIZE], read_buf[BUF_MAX_SIZE];
int n;
int maxfdp1, stdineof = 0;
fd_set rset;
FD_ZERO(&rset);
while (1)
{
if (stdineof == 0)
FD_SET(fileno(stdin), &rset);
FD_SET(connect_fd, &rset);
maxfdp1 = max(fileno(stdin), connect_fd) + 1;
if (select(maxfdp1, &rset, NULL, NULL, NULL) < 0)
{
perror("select error");
exit(1);
}
memset(buf, 0, BUF_MAX_SIZE);
if (FD_ISSET(connect_fd, &rset)) // socket is readable
{
n = read(connect_fd, buf, BUF_MAX_SIZE);
if (n == -1)
{
perror("read error");
exit(1);
}
else if (n == 0)
{
if (stdineof == 1)
return 1;
else
{
perror("server terminated prematurely");
exit(1);
}
}
memset(read_buf, 0, BUF_MAX_SIZE);
sprintf(read_buf, "%s:%s(%d Byte)\n", socket, buf, n);
write(fileno(stdout), read_buf, strlen(read_buf));
}
if (FD_ISSET(fileno(stdin), &rset)) // input is readable
{
n = read(fileno(stdin), buf, BUF_MAX_SIZE);
if (n == -1)
{
perror("read error");
exit(1);
}
else if (n == 0)
{
stdineof = 1;
shutdown(connect_fd, SHUT_WR);
FD_CLR(fileno(stdin), &rset);
continue;
}
if (buf[n-1] == '\n') // remove the character '\n'
{
buf[n-1] = '\n';
n = n - 1;
}
write(connect_fd, buf, n);
}
}
return 0;
}
int main(void)
{
int sockfd;
char buf[1024];
struct sockaddr_in server_addr;
char server_socket[128];
sockfd = socket(AF_INET, SOCK_STREAM, 0);
memset(&server_addr, 0, sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(PORT);
server_addr.sin_addr.s_addr = inet_addr(IP);
if (connect(sockfd, (struct sockaddr *)&server_addr, sizeof(struct sockaddr)) < 0)
{
printf("connect error \n");
return -1;
}
printf("server addr:%s por:%d\n",
inet_ntop(AF_INET, &server_addr.sin_addr, buf, sizeof(buf)),
ntohs(server_addr.sin_port));
snprintf(server_socket, sizeof(server_socket), "server socket (%s:%d)",
inet_ntop(AF_INET, &server_addr.sin_addr, buf, sizeof(buf)),
ntohs(server_addr.sin_port));
handle(sockfd, server_socket);
close(sockfd);
return EXIT_SUCCESS;
}
2-2 server 代码
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#define MYPORT 8887
#define BACKLOG 5
#define BUF_SIZE 1024
typedef struct CLIENT_CONN_ST
{
int connfd;
char socket[128];
struct sockaddr_in cliaddr;
} CLIENT_CONN_ST;
static CLIENT_CONN_ST g_client_conn[BACKLOG];
static void client_connect_index_init(void)
{
for (int i = 0; i < BACKLOG; i++)
{
memset(&g_client_conn[i], 0, sizeof(struct CLIENT_CONN_ST));
g_client_conn[i].connfd = -1;
}
}
static int client_connect_index_find(void)
{
int i;
for (i = 0; i < BACKLOG; i++)
{
if (g_client_conn[i].connfd == -1)
break;
}
return i;
}
static int client_connect_close(void)
{
for (int i = 0; i < BACKLOG; i++)
{
if (g_client_conn[i].connfd != -1)
{
close(g_client_conn[i].connfd);
g_client_conn[i].connfd = -1;
}
}
}
static int string_toupper(const char *src, int str_len, char *dst)
{
int i;
for (i = 0; i < str_len; i++)
{
dst[i] = toupper(src[i]);
}
return i;
}
int main(void)
{
int listenfd, connfd;
struct sockaddr_in server_addr;
struct sockaddr_in client_addr;
socklen_t addr_len;
int opt = 1;
char buf[BUF_SIZE];
int recv_len, send_len;
char read_buf[BUF_SIZE], write_buf[BUF_SIZE];
int ret;
int idx;
fd_set fdsr;
int maxsock;
struct timeval tv;
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(MYPORT);
server_addr.sin_addr.s_addr = INADDR_ANY;
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("socket");
exit(EXIT_FAILURE);
}
// 端口复用
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) < 0)
{
perror("setsockopt");
exit(EXIT_FAILURE);
}
if (bind(listenfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0)
{
perror("bind");
exit(EXIT_FAILURE);
}
if (listen(listenfd, BACKLOG) < 0)
{
perror("listen");
exit(EXIT_FAILURE);
}
printf("listen port %d\n", MYPORT);
maxsock = listenfd;
client_connect_index_init();
while (1)
{
// initialize file descriptor set
FD_ZERO(&fdsr);
FD_SET(listenfd, &fdsr);
// initialize timeout val
tv.tv_sec = 30;
tv.tv_usec = 0;
// add active connection to fd set
for (int i = 0; i < BACKLOG; i++)
{
if (g_client_conn[i].connfd != -1)
FD_SET(g_client_conn[i].connfd, &fdsr);
}
ret = select(maxsock + 1, &fdsr, NULL, NULL, &tv);
if (ret < 0)
{
perror("select");
break;
}
else if (ret == 0)
{
printf("30s timeout\n");
continue;
}
// check every fd in the set
for (int i = 0; i < BACKLOG; i++)
{
if (FD_ISSET(g_client_conn[i].connfd, &fdsr))
{
memset(read_buf, 0, sizeof(read_buf));
memset(write_buf, 0, sizeof(write_buf));
recv_len = read(g_client_conn[i].connfd, read_buf, sizeof(read_buf));
if (recv_len <= 0) // client close
{
printf("%s close\n", g_client_conn[i].socket);
close(g_client_conn[i].connfd);
FD_CLR(g_client_conn[i].connfd, &fdsr);
g_client_conn[i].connfd = -1;
}
else
{
printf("%s:%s(%d Byte)\n", g_client_conn[i].socket, read_buf, recv_len);
if (strcmp("exit", read_buf) == 0)
{
printf("%s exit\n", g_client_conn[i].socket);
close(g_client_conn[i].connfd);
FD_CLR(g_client_conn[i].connfd, &fdsr);
g_client_conn[i].connfd = -1;
}
else
{
send_len = string_toupper(read_buf, strlen(read_buf), write_buf);
write(g_client_conn[i].connfd, write_buf, send_len);
}
}
}
}
// check whether a new connection comes
if (FD_ISSET(listenfd, &fdsr))
{
memset(&client_addr, 0, sizeof(client_addr));
addr_len = sizeof(client_addr);
connfd = accept(listenfd, (struct sockaddr *)&client_addr, &addr_len);
if (connfd <= 0)
{
perror("accept");
continue;
}
idx = client_connect_index_find();
if (idx == BACKLOG)
{
printf("client connected upper limit, refused connect\n");
close(connfd);
continue;
}
// add to fd queue
g_client_conn[idx].connfd = connfd;
memset(&g_client_conn[idx].socket, 0, sizeof(g_client_conn[idx].socket));
printf("client addr:%s por:%d\n",
inet_ntop(AF_INET, &client_addr.sin_addr, buf, sizeof(buf)),
ntohs(client_addr.sin_port));
snprintf(g_client_conn[idx].socket, sizeof(g_client_conn[idx].socket), "client socket (%s:%d)",
inet_ntop(AF_INET, &client_addr.sin_addr, buf, sizeof(buf)),
ntohs(client_addr.sin_port));
if (connfd > maxsock)
maxsock = connfd;
}
}
// close all connections
client_connect_close();
exit(EXIT_SUCCESS);
}
2-3 编译运行结果
- 编译client.c、server.c
gcc client.c -g -std=gnu99 -o client
gcc server.c -g -std=gnu99 -o server
- 客户端连接服务器
- 客户端与服务器通信
- 客户端1主动断开连接
- 服务器进程结束
三、反思总结
3-1 服务器解读
通过select()的I/O复用可以实现多客户端通信。
ret = select(maxsock + 1, &fdsr, NULL, NULL, &tv);
完成了对新客户端连接和已连接客户端的监控,可以在循环中检查判断I/O的状态。
由于是多客户端程序,故需要一个for语句来判断每一个已连接套接字的I/O状态。
for (int i = 0; i < BACKLOG; i++)
{
if (FD_ISSET(g_client_conn[i].connfd, &fdsr))
{
;
}
-
注意事项1:在每次调用select()之前,都要对
timeval结构
进行初始化 -
注意事项2:在每次调用FD_SET()之前,都要对
fd_set结构
进行初始化,初始化函数FD_ZERO()
-
注意事项3:select()函数中的第一次参数为指定待测试的描述符的个数,它的值是待测试的最大描述符加1
3-2 客户端解读
之前几篇随笔介绍客户端与服务器socket通信中,客户端断开连接时,服务器能知晓。但服务器进程断开时,客户端进程是无感知的,除非再一次发送数据至服务器才能知道服务器进程断开连接了。
本次通过对客户端程序修改,当服务器进程断开连接,客户端进程可以立刻知晓。
四、参考引用
UNIX网络编程 卷1:套接字联网API(第三版)